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ALLEN Human Brain Atlas 

TECHNICAL WHITE PAPER: 
MICROARRAY DATA NORMALIZATION 
 
 
The ALLEN Human Brain Atlas is a publicly available online resource of gene expression information in the 
adult human brain. Comprising multiple datasets from various projects characterizing gene expression in 
human tissue, a major component is the óall genes, all structuresô microarray-based gene expression survey 
in human brain with accompanying anatomic and histologic data.  

The Allen Human Brain Atlas microarray dataset of 6 brains was generated and publicly released over 
approximately three years.  This white paper describes two sets of normalization methods and processes for 
this dataset: an original normalization strategy used for the first 4 brains and an updated normalization 
strategy implemented with the complete dataset of 6 brains. 
 
Normalized data values are accessible in multiple ways in the Allen Human Brain Atlas:  (1) through displayed 
data values and ódownload this dataô links in the interactive web-based application; (2) the application 
programming interface (API); and (3) downloadable .csv files, including archived files for historical array data 
processed through the original normalization strategy.  
 
MICROARRAY SURVEY OVERVIEW 
 
The experimental design of the microarray survey is summarized below to provide context for the 
normalization methods described in this white paper. Detailed operational, technical and quality control (QC) 
methods and processes for tissue procurement, processing, anatomic sampling, RNA isolation and 
microarray hybridizations are available in a separate technical white paper (see Whole Brain Microarray 
Survey). 
 
The goal of the microarray survey was to systematically profile gene expression throughout all major regions 
of neurotypical (ñcontrolò) adult human brains. Approximately 500 anatomically discrete samples per 
hemisphere were collected from cortex, subcortex, cerebellum and brainstem of each brain and profiled for 
genome-wide gene expression using a custom Agilent 8x60K cDNA array chip. Two methods were used to 
dissect samples:  (1) a scalpel-based manual macrodissection method primarily for cortical and other 
relatively large uniform samples; and (2) laser microdissection (LMD) for small or oddly-shaped structures 
such as subcortical or brainstem areas. To ensure the highest data quality possible, multiple quality control 
(QC) gateways (e.g. for RNA quality, cDNA-labeling quality, hybridization and array chip quality) were 
implemented throughout the experimental workflow. In addition, a number of technical and biological 
replicates were included to assess reproducibility of data both within a batch of samples and among multiple 
batches of samples.  Over the multi-year course of the project, brains were processed serially (i.e. expression 
profiles for the first brain were completed before profiling the second brain), and multiple batches of samples 
were submitted per brain.  Due to the nature and timing of dissections, each batch often primarily or entirely 
comprised a single category of anatomic samples. For example, early batches within each brain comprised 
macrodissected cortical structures whereas later batches comprised LMD brainstem structures, thus creating 
different anatomic sample compositions across batches.  To assess batch-to-batch variance within a brain 
and across all brains, two types of control samples were submitted with each batch, an internal control (IC) 
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and a Human Brain Atlas control (HC), at n = 2 per control per batch.  Table 1 below summarizes the 
composition and purpose for each of these controls. 
 
Table 1.  Control samples for each array batch.  Each array batch contained experimental samples from a single brain in addition to 
the control samples described.  

 
Internal Control (IC) HBA Control (HC) 

Composition Pooled RNA comprising 150-300 cortical 
macrodissected samples from each 
brain. 

Pooled RNA from ~300 cortical macro samples 
from the first brain.  (Doubles as IC for brain 1). 

Number per batch At least 2 At least 2 

Run withé. Each batch for the brain from which the 
IC was derived. 

Each array batch across all brains.  

Purpose Indicator of batch to batch variance 
within a brain. 

Indicator of batch to batch variance within a 
brain and among all brains.  

 
 
NORMALIZATION PROCESSES 
 
In a large scale microarray project such as the Allen Human Brain Atlas, in which thousands of samples were 
processed during an approximately 3-year time span, systematic biases were likely introduced into the 
dataset for various reasons such as drifts due to age of reagents or array chips, reagent lot changes, variation 
in RNA integrity among samples, variation in RNA quality due to different sample capturing methods, and 
other stochastic variations. In addition, for the first n = 3 brains, array data were generated by Beckman 
Coulter Genomics whereas the second n = 3 brains were processed by Covance Genomics Laboratory.  High 
comparability of results between service providers was a key metric in selecting Covance Genomics 
Laboratory to minimize effects of a vendor change.  The purpose of normalization is to minimize the effects of 
these non-biological biases while keeping biological variance intact so that within and across brain 
comparisons primarily reveal differences and similarities that are biologically relevant.  
 
Two sets of normalization processes have been applied to the Allen Human Brain Atlas microarray dataset 
(see Table 2). The original normalization strategy was employed for most of the project (through n = 4 brains) 
and the updated normalization strategy was implemented upon completion of the n = 6 dataset.  The updated 
strategy addressed previously unknown systematic biases and utilized processes that are a better fit for the 
array dataset.   
 
Table 2.  Summary of original and current normalization processes in the Allen Human Brain Atlas.  In both processes, 
normalization methods were first applied within-brain to adjust data within a sample batch and among sample batches, and subsequently 
applied across multiple brains (Cross Brain) to enable comparisons across two or more brains. 

 
Original Normalization Processes Current Normalization Processes 

Within Brain 1. 75th percentile alignment of intensity 
distributions of all samples within a batch. 

 
2. Adjustment for batch effects using ComBat. 

1. Preprocessing for array-specific biases. 

2. 75
th

 percentile alignment of intensity 
distributions of all samples within a batch. 

3. Adjustment for RNA quality differences 
among samples within a batch. 

4. Adjustment for batch effects by alignment of 
IC and HC across batches. 

5. Adjustment for dissection method 
(macrodissection vs. LMD) across batches. 

Cross Brain 3. 75
th

 percentile alignment of all samples 
across all available brains, using the first 
processed brain (H0351.2001) as the 
reference. 

6. Alignment of HC values across all brains. 

7. Alignment of brain-wise mean expression 
levels. 
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Original Normalization Methods 
 
Normalization Within a Single Brain 
Gene expression data for samples passing quality control were normalized within a brain by first aligning data 
within a batch, then by addressing batch effects for all batches within that brain.  
 
Within-batch normalization was performed using a 75% centering algorithm. Expression distributions of all 
samples in a single batch were normalized to have the same 75th percentile expression values. The effect of 
this normalization is illustrated in Figure 1 in which the first boxplot (A) shows raw data of all samples in 5 
batches of a single brain, the second boxplot (B) shows the effect of the 75% centering algorithm after 
application to all raw data across all batches, and the third boxplot shows (C) the result of within-batch 
normalization for 5 different batches where batch differences are clearly seen. 
 
Systematic batch effects were addressed by application of a cross-batch normalization algorithm, ComBat 
(Johnson et al., 2007; http://statistics.byu.edu/johnson/ComBat/), across an entire dataset from a single brain.  
The ComBat method applies either a parametric or non-parametric empirical Bayes framework for adjusting 
data that is robust to outliers in a given data set. The location (mean) and scale (variance) model parameters 
were specifically estimated by pooling information across genes in each batch to shrink the batch effect 
parameter estimated toward the overall mean of the batch effect estimates. After the ComBat algorithm was 
applied, the differences between batches disappear, as shown in Figure 1D. Raw expression values, within-
batch normalized expression values, and cross-batch normalized expression values were all uploaded into 
the database for further data analyses and data visualization. 
 
 
 

 
 
Figure 1.  Effect of 75% centering normalization and cross-batch normalization over 5 data batches within a brain.  The first 
boxplot (A) shows the distribution of raw expression values for each sample prior to any normalization. The second boxplot (B) shows the 
application of the 75% centering algorithm to all samples across all batches. The third boxplot (C) displays the result of applying the 75% 
centering algorithm to each batch separately, i.e., within-batch normalization. The fourth boxplot (D) shows cross-batch normalization 
with the ComBat algorithm applied to the within-batch normalized data from (C).  

 
 
 
 

A B C D 

http://statistics.byu.edu/johnson/ComBat/
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Normalization Across Multiple Brains 
To allow comparison of microarray data across 2 or more brains, a final cross-brain normalization was 
performed by aligning the mean 75

th
 percentile expression values of all internal reference control samples of 

each brain to that of the first brain.   
 
Current Normalization Methods 
 
As array data from additional brains were added to the dataset, further evaluation of the original normalization 
strategy and assessment of additional or alternative normalization methods to better address technical biases 
was performed and an updated overall normalization strategy was adopted and implemented. 
   
Normalization Within a Single Brain 
Systematic array-specific technical biases can arise due to factors such as variations in hybridization 
thermodynamics, RNA and cDNA variation, and regional hybridization inhomogeneity (Reimers, 2010).  
Probe GC content, location in the chip, and experiment-wise mean intensity for each probe were used as 
variables to characterize and correct array-specific biases. For each probe, individual sample deviations from 
a robust batch-wise average were modeled as a function of GC-content, location, and average probe intensity 
(see Figure 2, upper row). A flexible multivariate local regression (LOESS) surface was fitted to these 
deviations and a correction applied by subtracting the model-fitted values from the deviations. The effects of 
this correction are illustrated in the lower row of Figure 2 in a dataset containing groups of structure replicates 
(dissected from different areas of the same anatomic structure), in which the correlation of deviations from 
average between structure replicates is increased after correction.  
 
 

 
 
 

 
 
Figure 2.  Probe related non-biological biases and their corrections.   The upper row demonstrates non-biological variation 
introduced by probe location in the chip, mean intensity of probe, and GC content of probe.  The upper left panel shows deviations of 
values over the surface of a single chip relative to an experiment-wise average at each location, the upper middle panel shows the 
deviations from average intensity and the upper right panel shows deviations as a function of GC content.  The lower row shows the 
effects of the correction, with the lower left panel showing the distribution of correlation between structure replicates before and after 
correction, and the lower middle and lower right panels showing structure replicate correlation of deviations from average before and 
after correction, respectively.  (Figure courtesy Paul T. Manser, Virginia Commonwealth University.) 

Raw 

Spatial Bias Intensity Dependent Bias GC Dependent Bias 

Correlation Between 
Structure Replicates 

Structure Replicates: 

Raw Data  

Structure Replicates: 

Corrected Data 
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After preprocessing for array-specific artifacts, a 75
th
 percentile alignment of expresson intensity distributions 

was performed for all samples within a batch. 
 
In the Allen Human Brain Atlas dataset, a large source of variance was the dissection method 
(macrodissection or LMD) used to collect the samples.  As described above, macrodissection was used for 
samples from cortical regions and large subcortical nuclei whereas LMD was used for samples from small or 
oddly shaped structures within subcortex, cerebellar nuclei or brainstem structures. As examples, the 
supraoptic nucleus and dentate nucleus were dissected using LMD methods. To characterize the effects of 
dissection method on array data, a subset of data comprising structures with samples obtained by both 
macrodissection and LMD methods was selected for analysis to enable comparisons of dissection methods 
independent of differences in brain structure.  The analysis first revealed that macrodissected samples have 
on higher average expression values and better RNA quality, as measured by RNA Integrity Number (RIN), 
compared to LMD samples (see Figure 3). 
 

 
 
Figure 3.  Macrodissected samples have higher average expression and RIN values than LMD samples collected from the same 
anatomic structure.  Left panel:  boxplots of expression intensity (log2 scale) for LMD and macrodissected samples.  Right panel:  
boxplots of RNA quality (RIN) for LMD and macrodissected samples.  Whiskers in both plots represent 1.5*IQR from the upper or lower  
quartile.  (Figure courtesy Paul T. Manser, Virginia Commonwealth University.) 

 

 

Figure 4.  Relationship between RIN and expression.  Left panel:  relationship of a probeôs mean expression intensity (log2 scale) and 
the correlation between RIN and expression intensity for that probe.  Roughly 25% of probes are negatively correlated with RIN. Low 
intensity probes tend to be negatively correlated, while higher intensity probes are positively correlated.  Right panel: the distribution of 
probes (measured as density) as a function of correlation between RIN and expression intensity.  (Figure courtesy Paul T. Manser, 
Virginia Commonwealth University.) 
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Further characterization of the relationship between expression intensity and RIN values revealed that low 
intensity probes tended to be negatively correlated, while higher intensity probes were generally positively 
correlated with RIN (Figure 4).  However, as shown in Figure 4 (left panel), intensity is not a perfect predictor 
of RIN correlation since there are probes with a specific intensity level that are negatively correlated with RIN 
whereas different probes with the same intensity are positively correlated.  Based on these findings, 
normalization was done for each array batch using local regression to construct a model for each probe by 
fitting expresson deviations from the average expression to a function of RIN values. These probe-wise 
models were applied to estimate the bias for each probe and the correction made by subtracting the 
estimated bias. 
 
Corrections for array-specific artifacts, 75

th
 percentile intensity distribution alignment of all samples within a 

batch, and RIN-related biases were all performed within each batch of array samples.  The combined effect of 
these normalization steps is illustrated in Figure 5, which shows improved alignment of intensity distributions 
within each batch (represented by a unique color block). 
 

 
Figure 5.  Effects of within-batch normalization in 8 batches of brain H0351.1012.  Distribution of raw expression values for each 
sample in each batch prior to normalization (upper panel) and after within-batch normalization step to correct array-specific artifacts, align 
intensity distriubtions at 75

th
 percentile and address RIN-associated biases (lower panel). Each batch is represented by a unique color 

(teal, blue, rust, yellow, green, red, black, or pink) and each vertical boxplot within each color represents the intensity distribution of an 
individual sample.  
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Following within-batch corrections, a second set of normalization steps focused on normalization across all 
batches from a single brain (cross-batch normalization). The original normalization process applied the widely 
used ComBat method for correcting batch biases.  ComBat assumes a model for the mean and variance of 
data within batches and adjusts each batch to meet the assumed model specification by standardizing the 
mean and variance over batches.  While this is a good approach when the composition of samples from batch 
to batch is equivalent, it is less appropriate when sample composition varies greatly among batches because 
the assumption that all batches should have similar means and variances is not necessarily valid. In the case 
of the atlas Allen Human Brain Atlas array data, the operational workflow resulted in batches that were 
different from each other with respect to brain structures represented.  For example, the first sample batches 
for a brain typically contained macrodissected samples primarily or exclustively from cerebral cortex, the 
middle sample batches typically contained subcortical and cerebellar samples and the last sample batches 
contained primarily or exclusively samples from brainstem.  Thus, it is reasonable to expect that the means 
and variances of different sample batches are dissimilar due to biological (anatomic) variation across the 
batches.  Analyses of the data confirmed the expectation of dissimilar means and variances across batches.  
In addition, analyses of the effects of ComBat on the array dataset showed that differential expression 
between structures and expected variation in expression profiles of selected marker genes were diminished 
or suppressed (data not shown), suggesting that ComBat normalization may have obscured some of the 
biological variation present in the dataset. 
 
As described above and summarized in Table 1, the two sets of control samples included in each batch were 
the IC (internal control) samples common to all batches within each brain and the HC (HBA control) samples 
common to all batches throughout all brains.  Because each IC sample is from the same pool of RNA, any 
variation in IC array data is due to technical and environmental variation rather than biological variation.  The 
same is true for the HC controls.  Therefore to correct for batch biases, both IC and HC samples were utilized 
as references to align data across all batches within a brain.  For each batch, an offset was calculated by 
determining the difference between the 10% trimmed mean of HC and IC samples over all batches and the 
10% trimmed mean of HC and IC samples for each batch (see Figure 6).  The average of the two offsets for 
each batch were applied to all samples within that batch to complete the alignment. The offset values from 
HC and IC controls were highly correlated (R

2
=0.941).    

 
 

 
Figure 6. Control sample data before (left) and after alignment (right) using offset values (middle) for brain H0351.1012.  Each 
boxplot represents log2 expression intensity distributions for a single IC or HC sample (left and right panels).  At least 2 IC and 2 HC 
samples were included with each batch.  The offset for each batch was determined by subtracting the mean expression intensity of all 
HC and IC control samples within a batch from the mean expression intensity of control samples across all batches (note the reduced 
scale for the offset panel).  Each batch is represented by a unique color that is consistent across all panels.   



TECHNICAL WHITE PAPER  ALLEN Human Brain Atlas 
 

 

MARCH 2013 v.1 alleninstitute.org  

Microarray Data Normalization brain -map.org  

page 8 of 11 

After alignment using control samples, significant batch differences were still present due to the effects of 
dissection method (see Figure 7, middle panel).  In most cases, each batch often contained primarily or 
exclusively samples dissected with one or the other method. A modified quantile normalization was used to 
reduce the bias introduced by sample dissection methods while still maintaining anatomic structure-based 
biological variation. For each brain, the average of all macrodissected samples (Avg.Macro),  average of all 
LMD samples (Avg.LMD) and the average of all samples (Avg.all) were calculated. Quantile-quantile (q-q) 
mapping between Avg.Macro and Avg.all and q-q mapping between Avg.LMD and Avg.all were set.  For each 
macrodissected sample, each probeôs value was normalized by first finding the nearest expression value of 
Avg.Macro and subsequently determining the mapped value in Avg.all. For LMD samples, each probe was 
mapped to Avg.LMD then to Avg.All.  This process was repeated within each individual brain to complete 
cross-batch within-brain normalization (Figure 7, right panel).   
 
 

 
 

Figure 7.  Effects of cross-batch normalization processes on batchwise expression distribution.  Mean expression distributions 
for each batch in six brains are shown in each panel.  Blue boxplots correspond to batches primarily or entirely composed of 
macrodissected samples, gold boxplots correspond to batches primarily or entirely composed of LMD samples, and brain ID numbers are 
listed on the x-axis.  Batchwise expression distributions after completion of within-batch normalization steps are shown in the left panel, 
and show the nature of the dataset prior to application of cross-batch normalization processes. Batchwise expression distributions within 
each brain become better aligned after completion of IC and HC control alignment across batches (middle panel), and after completion of 
cross-batch modified quantile alignment. The number of batches per brain varies depending on brain size and whether both hemispheres 
(H0351.2001 and H0351.2002) or a single hemisphere (remaining brains) was processed for microarray. 

 
 
Application of modified quantile normalization lowered expression intensity values of macrodissected samples 
by 0.6 on average and increased expression intensity values of LMD samples on average by 1.1.  To assess 
whether these normalizations overcorrected values, either lowering macrodissection values too much or 
increasing LMD values too much and thus resulting in increased false absent and false present calls, 
respectively, structure samples collected by both LMD and macrodissections from several brains were 
compared for present and absent calls relative to threshold.  Specifically, sample pairs within each brain were 
selected for analysis when the criteria that the anatomic structure was collected by both macrodissection and 
LMD dissection were met.  Thus, the effects of dissection method could be assessed while controlling for 
structure.  The analyzed dataset contained over 17 sample sets from n = 4 brains.  The number of probes 
above or below threshold were compared in macrodissected vs. LMD samples based on pre-quantile 
normalized expression values and post-quantile normalized values by building contingency tables, each with 
a fixed present/absent call threshold.  Receiver operating curves (ROC curves) were constructed for data 
before and after quantile normalization by varying thresholds and calculating the effect on sensitivity and 
specificity (Figure 8). The ROC curves demonstrated increased sensitivity (true present) with quantile 
normalization without increased loss of specificity.  In addition, analysis of contingency tables at a log2 


